RE-ENGINEERING THEMULTIMISSION COMMAND SYSTEM
AT THE JET PROPULSION TLABORATORY

SCOTT Al EXANDER
JEEE BIESTADECKI
NAGIN COX
SUSAN MURPHY
TIMREEVE

Operation Fngineering | .ab
Jet Propulsionl.aboratory
CaliforniaInstitute of T'echnolog
MS 301-345
Pasadena, California 911 09-8099
{ salex, jeffb,nagin, sooz, timr@devvax.jpl.nasa.gov)

ABSTRACT

‘The Operations Engincering 1 .ab (OEL)at
J} ’l. has developed the multimission
commandsystemaspartof JPL's Advanced
Multi mission Operations System.The
command system provides an advanced
multi mission environment for secure,
concurrent commanding of multiple
spacecraft, The command functions include
real-time command generation, command
translation and radiation, status reporting,
some remote control of Deep Space Network
antenna functi ons, anti command file
management. The mission-indep endent
architecture has allowed easy adaptation to
new flight projects and the system currently
supports allJPl. planetary missions
(Voyager, Galileo, Magellan, Ulysses, Mars
Pathfinder, and CASSINI).

This paper will discuss the designand
implementation of the command software,
especially trade-offs and lessons learned from
practical operational use.

The lessons learned have resulted in a re-
enginecring of the command system,
especially in its user interface and new
automation capabilities. Theredesign has
allowed streanilining of command operations
with significant improvements in productivity
and case. of use. In addition, the ncw system
has provided acommand capability that
works equaly well for real-time operations

and within a spacecraft testbed. This paper
will also discuss ncw development work
including a multi mission command database
toolkit, auniversal command translator for
sequencing and real-time commands, ant]
incorporation of telecommand capabilities for
NCW missions.

INTRODUCTION

The Jet Propulsion laboratory has a long
history of building multimission ground data
systems that arc designed to be easily
adaptable. tonew projects. The mainframe-
based systems of the 1970s have been
replaced by distributed, workstation-basc{ i
systems as part of JPl.'s advanced
Multimission Ground Data System (MGDS).
The ncew MGDS provides flexible, extensible
components that are easily adapted for new
missions, but more importantly, can also
support multiple missions concurrently.
However, as these ground systems have
evolved, 1 t has become apparent that
providing advanced tools that help simplify
and automate the old way of doing business
is not enough to support the small, low-cost
missions of the future. Inparticular, the
uplink process has been very labor intensive
for planctary missions and it must be re-
engincered to provide the simple command
capabilitics that will be nceded for missions
with cheaper, more autonomous spacecraft
and for operators wanting remote tclescience
capabilities.

The Operations Engineering Lab (OFL) has
developedand refined the MG DS Command
Subsystem to be an adaptable, low-cost,
multimission component of the overall uplink
process. As part of our development work,
the OEL, is working with the sequencing
tecams and developers at JPI, to re-engincer
the uplink process so it can provide seamless,
easy-to-use capabilitics for spacecraft
commanding.The goal is to provide an off-
tt)c’-shclf command package thatcan support
large to smallmissions that need to command
throughthe Deep Space Network (IDSN).

MG1)SCOMMAND
SYSTEM DESCRIPTION

The MG1)S Command functions include real-
time command generation, command
translation and radiation, states reporting,
remote control of DSN antenna functions,
and command file management. A
distributed, network-bnscd, graphical
interface is provided 10 give real-time
command radiation status to users atremote
sites. ‘This interface was implemented i n
X/Motif. The Command System provides
security functions including authentication for
two user privilege levels, internal security
checks, a central node for controlling all
Col) mand radiation processing,a
configuration control environment for
command files, ant] a mode for non-
interactive Command viewing.

The primary control function of the
Command system is to permit real-time
transmission of command files and memory
loads from the groundto a spacccraft. The
Command Control Graphical User Interface
(GUI) (Figure 1) provides real-time,
interactive control of the command
transmission and radiation to the spaceccraft.
The connection between Command and the
DSN is asecurc process controlled by the
1)ata System Operations Team at J))],. These
operators allocate the connectionresources to
a project mission control team after ensuring
aclean commanding interface.

Command files arc first transmitted to the
DSN and held at the recciving end until the
completeness and integrity of the file transfer

can be verified. Onee there, the user is tree to
put the files in the queue of the Command
Processor Assembly for radiation to the
spacecraft either atthatmomentor some later
specified command window. The user also
uses the Command GUI'to remotely control
the configuration of the antenna in terms of
whenactual radiation of commands.

Any time the user is connected to a DSN
station, the station returns monitor data which
is displayed in the Command GUI for
inspection by the operator. Monitor data
contains informationaboutthe current
antenna configuration, acknowledgments of
command file radiation, and constant status
information including alarms, files at the
CPA, andreceipt of comimand blocks.

Command files arc generated prior to
transmission using the Commandsystem or
the Sequence software systemn. Both
processes are similar. A spacecraft command
sequence is formulate.ci and constraint -
checked and then the actual cornmands are
entered as command mnemonics, encoded
abbreviations (with parameters) that tell the
spacecraft what commands to perform. The
command mnemonics arc translated into a
spacecra ft-ready file that contains binary
translations of the mnemonics, spacecraft
identification information, start anti
acquisition codes, and f1le integrity and error-
detection information. Once the command
files are prepared, they are stored and made
avail able to the Command system through a
secure database that checks command formats
anduser permissions. Before transmission,
the command files arc reformatted for
recognition and radiati on by the DSN (Figure
2).

ILESSONS 1LEARNED

When the MGDS Command System w as
completed, existing projects were required to
transition from the mainframe MCCC
Command System. Voyager was chosen as
the first projcctto transition since it had
entered its interstellar cruise phase. ‘1 heir
experience provided multiple lessons learned
about simplifying the user inter face and
reducing the number of steps in the uplink
tasks.

When the Mars Observer (MO) Project came
online as a ncw project, they had no prior
system for comparison. *1"her experience was
different since they had a muchhigher
command rate than the Voyager mission.
They had aso decided not to implement the
real-tilnc command translation capability in
th ¢ MGDS C o m mand System as a cost-
cutting measure. This meant that all of their
command files, even those with only asingle
non-inter active command, had to be prepared
off-linc using the morc complex Sequence
software. As aresult, the project was having
difficulty keeping up with its command rate,
even inthe early cruise phase. When the
spacecraft Went into emecrgency mode,
commanding became a 24-hour activity with
many engineers required in the process.

‘I'here were two lessons learned from the MO
use o f the command system. First,
climinating the real-linlc translator during the
mission planning phase resulted in increased
costs in the mission operations phase.
second, thenumber of Steps necdedto
prepare commands had to be reduced. in
particular, the use of the security-control]ccl
Command GUlhad to be re-evalu ated. The
GUI was required to perform even simple file
reformatting functions, with no options for a
commancl-line interface or batch-mode. This
reliance on a graphical interface prevented
automating some steps with simple scripts
becausc a user had to be sitting at the
computer, pushing each button mturn, It
became apparent that we had to provide an
off-line command generation capability that
was bascd on non-graphical, lessrestricted,
command-line interfaces. The secure GUI
was still essential for transmission and
radiation of commands. With this re-design,
DSNresources ate only required for the final
transmission and radiation of the Command
files to the spacecraft. The impact of this off-
line capability onrequired network resources
issignificant.

‘Jbus, the Commandsysteminterface was
redesigned to allow users to gencrate
command files in an off-line environment
without requiring a connection to the
command control GUIL. First, the translation
and reformat functions were developed into

separate, stand-alone programs. The
translation program translates tex t mnemonic
commands into an inter mediate Spacecraft
Message Format (SCMIY) file containing
binary commands expected by the spacecraft.
The reformat program packages the binary
commands into the form expected by the
DSN. Thesc programs canbe started up by
the user on the UNIX command line or
script, as well as by the central command
system. The off-line capabilities have also
allowed script automation to reduce the
number of manual, interactive steps involved
in the gencration of command files. A
eraphical interface shell was builtusing the
JPl.-developed PERIL. scripting language anti
OF1.SHEI J. intcl-face building tool.

This off-line translation toolkit aso found
extensive use in spacecraft flight testbed
facilities where no connection to the DSN
was allowed. Testbeds provide an
cnvironment for testing and validating
commands on a mock spacecraft. The testbed
command system sends commands directly to
the ground support equipment.

Another lesson lecarncd was the need to
streamline and simplify the end-to-end uplink
process. ‘I"he uplink process involves
multiple operations and development teams.
This creates asystem with multiple tools ancl
interfaces, forcing the user to learn how to
olerate. across severa differentboundaries.
From a project perspective, there should only
be a single interface to the uplink process that
would allow a single user to perform all

functions including spacecraft sequence

generationand translation, ground sequence
of events schedule generation, real-time
command preparation, mnemonic translation,
and command transmission anti verification.
The OEL. has worked closely with the Mars
Surveyor Projectto implement an integrated,
graphicalinterface tool that allows a single
user to scamlessly perform end-to-end
functions in the uplink process.

The successful experience of the early
projects using the MGDS Command system
eased the transition of the remaining projects.
All of the JPL. planetary missions have now
transitioned successfully to the MGDS
Command System and the mainfram e-based

Command system was dccommissioned a
yearcarticer than originaly planned.

RE-ENGINEERING
COMMAND TRANSLATION

Since both the Sequence and Command
software provided capabilities for auserto
generate command files, there were common
translation capabilities duplicated in both
systems. ‘I"he OFI. has worked closely with
Sequence developers to re-engincer the
translation process and develop a universal
command translator that can be used by both
subsystems, The redesigned system includes
the usc of advanced graphics andobject-
oriented techniques.

The translation functions in the Sequence
system were based onmanually building
mnemonic-to-bit translation information in
cach project's unique command acro
language. These 1)roject-specific adaptations
were time-consuming and error-prone. The
command translation process in the
Command software was basedona
multimission Command Definition | .anguage
(CI11.) that can be used to specify command
mnemonic-1o-bit definitions and constraints.
The CDI. file is compiled into a project's
Command Database. A command database is
built for each projc.et, but the language
compiler, database interpreter, and translator
software is multimission. In the re-designed
uplink process, the command databasc
interpreter and translator software. was re-
built as generic, universal libraries that could
be called by both Command and Sequence
software. This multimission, common
approach will significantly reduce uplink
costs.

An illustrative example of CDI.code follows:

I definea memory load message
MESSAGE: memload-msg(buf: 200)
FIELDS
data: 160 I 160 bit local variable
END FIELDS

I declare the kinds of arguments that will

I beentered by the user
LLOOKUP ARGUMENT: name
I lookup value below in hex

CONVERSION: HEX
LENGTH: 8
‘M EMILOAD' = 'A9O"
END LOOKUP ARGUMENT
NUMERICARGUMENT: address
I user to enter number in hex
CONVYERSION: NEX
LENGTH: 16
I acceptable range
'00FF' ‘1’0 'FERF}!
END NUMERIC ARG UMENT
NUMERIC ARG UMENT: sword
I user to enter number in hex
C ONVERSION: HEX
LLENGTII: 16
END NUMERIC AR GUMENT

I read mnemonics from user input
READ AR GUMENT name -
REA Al) ARGUMENT address
REPEAT 1 TO 10 TIMES
(COUNTING WITH swords)
READ ARGUMENT sword
data := data // sword
FND RE PEAT

I combine converted input into a message

I counters like "nwords' are 16 bits

buf := name // address // nwords // data
END MESSAG E

It definesa memory load message that can

loadup to ten words, sixteen bits each, into a

certain area of memory.If the user’s

mnemonic input was, for example,
MEM1.OAD; 0A48;1; 22; 333

the resulting hex output would be:

A9 0A480003 00 01 00 22 0333
where the first byte is anop code that
significs a memory load instruction, the next
two bytes arc the address to load the data
into, the next two bytes arc the number of
words in the data,and the remaining six
bytes arc the data itself.

Since (3)1, files can become. very complex, a
command generation toolkit is being
cleve.loped to facilitate their creation and
browsing. The CDI, toolkit will include a
graphical CDI.editor, a CDI. parser and
compiler, and various report generators. In
the. future, some text based on-line reference
tools and a smart editor to help a user create
mnemonics are planned.

The firststep take nin the development ot the
toolkit was to determine the data structures
forholding the information contained in a
(" 1) 1. file. These structures are accessed
through a library (hat is used by alltools in
thetoolkit. 11ere, an object-oricn[c.d approach
wa s used. For exampl e, CDI, has several
types of processing routines. So, one of the
classes was for that of a genera processing
routine. A subclass of the general routine is a
message routine. Arguments arc also objects,
with lookup arguments an(l numeric
arguments derive.d from acommon, Il OIL’.
ccneral, argument class. For the CDIL code
above, there s oneinstance of a message
routine, memload-msg. ‘]’ here are instances
of both kinds of argument objects: name,
address, andaword.

Whenan object is created, a parent object is
specified. Whenever an object is destroyed,
all of its children arc automatically destroyed
as well. For the exampole above, name,
address, and sword are children of
memload-msg. So if the. user of the
graphical editor chooses to delcte the
memload-msg routine, the code for the
editor is simply onc cal to destroy the
appropriate parent objectand all of the child
objects (which arc not useful by themselves)
arc automatically cleaned up.

Cl)1, objects can refer to each other. Yoran
easy example, the READ ARGUMENT
address statement is itself an object (in this
case., of class input processing statement and
child of memload-msg). It contains a
reference to the object corresponding to the
argument to be read. Thus, if the CDI. editor
user changed the name of the address
ar gument, when the CDI, code was saved the
READ ARGUMENT address statement
would automatically be written with the new
name. Note that for this example, the editor
will not allow the address argument to be
destroyed until the reference to it in the
READ AR GUM ENT address statement
is changed or the statement removed
altogether. It is easy to get alist of references
to any object. ‘1’here arc many constructs in
CDI. not shown in the example that lcad to a
single object being refer-reel to in several
places.

The CDIL language was designed years ago
as part of the old main frame-based co mmand
system. It 1S missing some important
functio nality such as arithmetic and
comparison operators. CDI. was aso written
before the Telecommandstandard, so some
of its constructs arc Outdated andintended for
tasks such as cmbedding error polynomials
into the binary commands. In the new
Command system, any functionality not
presentin the CDI, language must be added
as I];ird-coded ‘user hooks' to the command
translation software, creating additional
expense for developmentand testing. Thus,
as part Of ourre-engineering efforts, we are
incorporating important enhancements and
simplifications tothe CDI.language. I'or
some of these enhancements, wc arc
investigating the usc of other process control
languages suchas spacecraft Control
I.anguage (SCL)in the uplink process. With
the object-oriented approach taken and the
goalnf reducing cl;iss-specific code, we
expect it to be easier to make changes to the
language.

Wc arc aso investigating extending CIDI. to
include information that would typically be
found in a command dictionary such as
telemetry verification points and flight rule
constraints. The graphical CID1. toolkit is also
being enhanced to provide a complete
command definition and dictionary toolkit
with hypertext references to other mission
documentation.

other recent development work includes
porting our code to multiple UNIX hardware
platforms, ANSI-C, and XPG -4 open
standards. in addition, wc arc incorporating
the 1 98-/ Consultative Committee for Space
Data Systems (CC SDS) "Telecommand”
standards into the MGIS Command System.
All future JJ']. missions will comply with this
standard.

TELECOMMANI) IMPLEMENTATION

“I’he Telecommand service model isa layc.reel
model which more or less paralels the 1SO
Open Systems Interconnect model. The
highest two layers of this model, the
Application Process layer and the System
Management layer, have not yet been

specified in detail. It is still up to the
individual projectto define procedures and
data structures in these. layers. Thelayers
below this, however, have been specifiedin
detail. our response to the standard addresses
the Packetization, Segmentation, Transfer,
("ding, andPhysical 1 .ayers

In the command subsystem, the
Telecommand (1C) standard is being
implemented as a generic, batch-mode
“wrappingscrvice.” Clients of the service
supply the datatobewrappedin ASCI |
formatted files called Command Packet
(CMD_PKT) files. The service takes
multiple, one or more, CMD_PK'T files as
input, wrapping the data from each file record
and time-order merging the resultsinto an
SCME file.

CMD PKT file format

The format of the C MDD _PKT file follows the
CCSDHS Standard Formatted Data Unit
(SEDU) standard. The J-data (user) section
of the fiJc is organize.c] as aheader section
followed by a series of data sections. The
section boundarics arc defined with special
markers, and the information within these
scctions is organizedin a "keyword = value”
format. An example of a header section
follows:

$$SMPEF COMMAND PACKET FILE

*CMDPKT SEQTRAN.CMDPKT/JOB001

*OPHRATOR Frank Zappa

*PROGRAM SEQTRAN - MARS
PATHFINDER V19.0 APR 29, 1994

*CREATION JPL. 94-131/09:58:59

*BEGIN FrEkxx NO DATA **x**
*CUTOFE FrExk NO D ATA #¥xkx
*ITULE *rkkx NO) ATA *****
*7ERO xxkkx NO DATA **xxx
*CMDEIIL KaArk N O] ATA *rxxx
*E11.S17, 6

*SISVER 04/27194

*IFRMVER 1

*CDUACQI EN 22

*CDHUACQ 55

*C | . TUSSQLEN?2

*1TUSSQ 1B 90

*Cl TUTSQIENS

*Cl TUTSQ 55

*CLTUDLY ENDSTART/BITS/0

SERMPERCETU T $SEOS

The header section contains global file
information. For exa mple, the value of the
'FH ESIZ keyword tells you the number of
data sections which follow. 'CIDUACQILEN'
and'CDUACQ' together form a specific ation
of the acquisition sequence to be used for this
file.'CDUACQI .EN' is the number of octets
in the acquisition sequence and 'CDUACQ'
is the smallest repeat pattern. Using the above
record, the Telecommand wrapping service
would generate 22 octets of 55 hex.

Fach data section contains ASC 11
hexadecimal data to be wrapped,along with
cnough information to fill in the
‘Telecommand headers. Hereisan example:

$°K'T SCGNIL.D

PKTVER]

SEQHFLGS FIRST
CHECKSUM 947D

vC]

LENGTH 12

APPID 0

OPENWIN 82-080/1 1:40:00.000

CLOSEWIN 82-080/12:00:00.000
1RMSEQ 0

FEC EACSUMSSAA
CTRI CMI) NO

BYPASS YES

PACKETIZE N
FRAMING YES
SEGMENTING NC)
DAT'A
0A0 1 ()()()0 02000001 00020003
00040005000600070008 0009

$EOP

Following the DATA keyword is a sequence
of ASCI1 hexadecimal words. This
represents the binary data to be wrapped. The
format and structure of this data is known to
the higher layers of the CCSDS
Telecommand service model (system
management and application layers). The
values of other keywords enable the
wrapping service to fill in the TC headers.
For example, the value of the VC keyword
tells the wrapping service what 10 put into the
6-bit ‘virtual channellD)' field of the TC
transfer frame header.

The creator of this lilt also has control over
whichlayers of wrapping arc applied to the
data’T'he wrapping, service concerns itself
withthe following layers:

. TC packetization layer (1'C packets)

. TC segmentation layer (TC segments)

. TC vansfer layer (T'C transfer frames)
TC coding layer (Command Link
Transmission Units (CL.TU g),
consisting of TC codeblocks)

For example, consider thekeywords
PACKETIZY, SIEGMENTING, alld
FRAMING. PACKETIZE and
SEGMENTING are both set to NO, while
I'RAMING is set to YES.This means that
the TC wrapping service will consider the
data to be the contents of a TC frame, and
will only prependa TC frame header (and
may also append a Frame Yrror Control
word, if the I'l{C keyword is sCt to a value
otherthan NONL), be.fore creating a CLTU.
I f PACKETIZE were setto YES, the
wrapping service would consider the data to
be the contents of a TC packet, andwould
apply a TC packet header. ‘1’hen, if
SEGMENTING and FRAMING were both
sct to YES, (he TC packet wouldbe broken
into TC segments, and then each TC segment
would be wrappedasa TC frame, before
creating a Cl.TU. Currently, all eight
permutations of (PACKETIZE,
SEGMENTING, FRAMING) arc alowed by
the wrapping service, though only three may
be legal: (NO, NO, YES), (YES, NO, YLES),
and (YES, YE S, YES). This flexibility
makes the name'CMI>_PK'I" something of a
misnomer; perhaps 'CMD_TC'would have
been a better choice.

Currently, cachdata section of this file will
result in one or more C1.TUs. Normally,
only one C1.TU will be created per data
section; the only thing which can affect thisis
the setting of the FRMSPERCI.TU keyword
in the CMD_PK'I' header section. If this is set
to avalue N, where N > 0, then no CL.TU
may contain more than N TC frames. So, if
the amount of data in the data section is large
enough that when it is segmented, more. than
N TC frames are created, more than onc
CLTU will result.

Fach data record contains a tin nestamp as
well. Thismaybe specified as either a
window (OPENWIN,ClLLOSEWIN)or an
exccution time (EXECTI ME). Times are
expressed in GM relativeto the spacecraft
(SpaceCraft Event Time, or SCET). For a
given data record, this means that the data in
that record will be at the spacecraft, ready to
be processed, at the given (EXECTIME), or
withinthe given window (OPIINWIN,
CLLOSEWIN).

1C Wrapping Service

This service is implemented as a single
process which consumes onc or more
CMD_PKT files and produces a single
SCME (SpaceCraft Message Hormat) file.
Fach data record of the SCMI- file contains a
single ‘spacecraft message.’, which in this
caseisa Cl.TU.

FEach CLTU within a record may be preceded
by an acquisition sequence, depending upon
the PLLOP (f >hysicall.ayer operation
Procedure) in usc by the project. Currently
two P1.OPs arc defined in the TC standard.
1nPLOP 1, CL.TUsare individually radiated,
meaning that the physical telecommand
channelis deactivated after each transmitted
Cl /TU. in this case every CIL.TU in the
SCMF file must have an acquisition sequence
prepended. In P1 .01>2, the physical channel
is not deactivated until the last C1.TU in an
‘upload’ has been transmitted. For our
purposes, this means that only the first
CL.TU of the SCMI: file will be preceded by
the acquisition sequence.

The T'C wrapping service places the resultant
CL./TUsinascending time order within the
SCMUE. Further, the timestamp in each record
of the SCML' is the time of radiation of the
first bit in the record. This means that in
going from execution time in CMD_PKT
file(s) to an SCMYF, all times have to be
backed off by the number of bits in the record
(multiplied by the time of one bit at the
current uplink rate), plus any inherent
spacecraft delay time, plus the appropriate
onc-way light time. All of this is a fairly
complex operation, since wc arc merging
multiple CMID_PKT files, each of which can

have a mixture of window and execution time
records.

TC Wrapping Scrvice Design

A modular approach was taken in the design
of the wrapping service. It is decomposed
intofive primary modules, asfollows:

1. CMD_P KT file I/O module.
2. SCMF file 170 module.

3. Light time module.

. Telecomman d module.

. Main module.

ahs:

The first four modules arc implemented as
libraries. The main module calls functions in
these libraries. The CMD_PKT file module
depends upon the Telecommand module as
well, mainly for validation of TC header ficld
values.

The CMD_I'K'] file I/0 module isolates all of
the knowledge of the format and structure of
CMD_PKT files. Its set of cxported
functions allow record-oriented 1O (both
reading and writing) of CMD_PK'T files.

The SCMF file I/O module is directly
analogous to the above, for SCMEF files.

The light time module contains functions
whit}) perform conversion between ground
transmission times (TRM) and spacecraft
event times (S(2}'1’). ‘I'his module reads a
LLIGHTTIME files in order to perform its
function.

The Telecommand module isolates all of the
knowledge of the TC data structures. It
contains a set of functions for validating all of
the. T'C header fields values, as well as a set
of functions for performing TC wrapping.
This module also maintains a table of project-
dependent Telecommanding data. Items such
as default acquisition, start, and tail
sequences, virtual circuit and application id
mnemonics, 1TC codeblock size, and PLOP
arc included in this table. The main module is
responsible for the overall control of the
wrapping process, and deals directly with the
tilnc-ordering issue.

CONCILUSION

The Operations Enginecering L.ab has
developed the JP’I. multi mission command
system to provide low-cost, adaptable,
extensible uplink capabilities to new and
existing flight projects. The goal in the
ongoing re-enginecring of the command
subsystem is to create a set of independent
tools to allow more flexibility for the user and
to make any necessary customization faster
and casier for future, low-cost missions.

ACKNOWLEDGMENTS

‘This work was done at the Jet Propulsion
I.aboratory, (California Institute of
Technology, under a contract from the
National Aecronautics and Space
Administration. Thanks to the. technical staff
in the OLl., the early MGDS development
teams, and the JPI. Mission Operations
Teams for their enthusiasm and support.

Data Flow for Commanding Process

Command
Sequoance
Generation

Command XLT
Database

»

e
OSN
Format
Lt Filo
_ |4

Database

Command Contral
Transmission/
DSN Interface

(CMD)

>

P Spacecratt Validato / Flelormat
Messaga
Cr” Packot 1 - = [(Telecommand Wrap)
ilo
Universal i%ii;cg":h
Command or Packet
Translator / Fil
Database (‘
Libraries)
Mromcnic
Comma nd gou‘urlm “nq
Maemonics Do 7 faan‘sl at 'Dr
Filo o
Light Time Fie _
S/C Clock Time f iles

GCF
Blockss
GCF
Interface
— (GIF)
Moritor A
Blocks

Spacecrah

Command

GUI

L s tea e W - - aariiam SN Lyt e am
€11 . ¥ S
X1 Lonn. Contrel | con v Trenelotion Uritittes
N 14 . TV pamen —— p
oss: [14] e 1 oo sysren: [BleedT] G5y [shondie] vics
Controlled by} eocc HOHITOR 5_9
Radlatlen Rater 3I7.00 bes Aslenns 102 [
Surfec 01 oaro Trananltter 101 "ess @9 .
Cureont Hodat cmr Trameniieer ot e Bode: .
ronanlttor Pever: Ces:
€natled Mods: o XWased Racigal
PRINE FILE STATUS: $8end Nungal
5ot mehter. wmw s e oocw oo . |
Ph QR uf RACIATED €LEMNL _ - .) -
, Tile Il AT - —
;) Els ter€ sce
1
4%
5
T D15k
Flls Status
dd ot T -
2)
N
o i - — . . - . — —
5 . . — e e e
e RETWMINING RAGIATION TLA% $ [000/00:00:00] A aari;[LecsiCatel/
7 .
L RACIAYION COMFLETES AT [000700100306 | R - -
ROMCT FILES o filee gu—
File Nams SC D53 Status Fernat Bit 1/0pen M. Creation Tine File Mens SC 055 Status Fecaat Wit 1/0ven H. Crestlon
(361 [T S 1 [T 1534 021119:3712%
o 5 1 €roZDoH 1333-262101125 142
aart01 727 8 s cmlosa 1351-233121:33103
wll.0fdu 27 o m crolxl 1950 Jos117104:21 |-
ond m1¢.22 77 8 o
SCLE.SCETOIGT7.077 © & SCUK_SCET 1303 205712;:39:05
c3 9 o scrr 1993-280721:20103 B
s 7 ¢ » suw 1393-154700: 33103
Ve
rﬂﬂ!mﬂm_ ,,,,,, PSR] .
DIRECTIVE HISTORY . DInSCTIVE A SPONIEY
T11:01 SLA/II 163 3h 3 ALiA 1074771101134 $C
(2:D) 024/2M1038)8) rHwwowl$S dasll 24723150100
{310) 02 4723%100: 43 douloeve. L4 ortl ans wosn Lde Ca3mIGEA/ BTN, T
(4107 $44/T3 3 sliens T és. 14 tes"wlondte {a* wos u2® £4 25111140 VO €
{310} o2 LR 30 e 2 des=ia

e el

